Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist

نویسندگان

  • S McKay
  • NH Griffiths
  • PA Butters
  • EB Thubron
  • GE Hardingham
  • DJA Wyllie
چکیده

BACKGROUND AND PURPOSE Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA receptors in developing cortical neurones. EXPERIMENTAL APPROACH Two-electrode voltage-clamp (TEVC) recordings were made from Xenopus laevis oocytes to determine the pharmacological activity of TCN 213 at recombinant NMDA receptors. TCN 213 antagonism was studied in cultures of primary cortical neurones, assessing the NMDA receptor dependency of NMDA-induced excitotoxicity and monitoring developmental switches in NMDA receptor subunit composition. KEY RESULTS TCN 213 antagonism of GluN1/GluN2A NMDA receptors was dependent on glycine but independent of glutamate concentrations in external recording solutions. Antagonism by TCN 213 was surmountable and gave a Schild plot with unity slope. TCN 213 block of GluN1/GluN2B NMDA receptor-mediated currents was negligible. In cortical neurones, at a early developmental stage predominantly expressing GluN2B-containing NMDA receptors, TCN 213 failed to antagonize NMDA receptor-mediated currents or to prevent GluN2B-dependent, NMDA-induced excitoxicity. In older cultures (DIV 14) or in neurones transfected with GluN2A subunits, TCN 213 antagonized NMDA-evoked currents. Block by TCN 213 of NMDA currents inversely correlated with block by ifenprodil, a selective GluN2B antagonist. CONCLUSIONS AND IMPLICATIONS TCN 213 selectively blocked GluN1/GluN2A over GluN1/GluN2B NMDA receptors allowing direct dissection of functional NMDA receptors and pharmacological profiling of developmental changes in native NMDA receptor subunit composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.

NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain and are involved in numerous neuropathological conditions. NMDA receptors are activated upon simultaneous binding of coagonists glycine and glutamate to the GluN1 and GluN2 subunits, respectively. Subunit-selective modulation of NMDA receptor function by ligand binding to modulatory sites distinc...

متن کامل

TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner

Antagonists that are sufficiently selective to preferentially block GluN2A-containing N-methyl-d-aspartate receptors (NMDARs) over GluN2B-containing NMDARs are few in number. In this study we describe a pharmacological characterization of 3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide (TCN 201), a sulphonamide derivative, that was recently identified fr...

متن کامل

Probing Spatial and Subunit-dependent Signalling by the NMDA Receptor

NMDARs are ligand-gated cation channels which are activated by the neurotransmitter glutamate. NMDARs are essential in coupling electrical activity to biochemical signalling as a consequence of their high Ca permeability. This Ca influx acts as a secondary messenger to mediate neurodevelopment, synaptic plasticity, neuroprotection and neurodegeneration. The biological outcome of NMDAR activatio...

متن کامل

Distinct Modes of AMPA Receptor Suppression at Developing Synapses by GluN2A and GluN2B: Single-Cell NMDA Receptor Subunit Deletion In Vivo

During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to Gl...

متن کامل

Distinct Functional and Pharmacological Properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA Receptors

NMDA receptors are tetrameric ligand-gated ion channels comprised of GluN1, GluN2, and GluN3 subunits. Two different GluN2 subunits have been identified in most NMDA receptor-expressing cells, and the majority of native receptors are triheteromers containing two GluN1 and two different GluN2. In contrast to diheteromeric NMDA receptors, little is known about the function of triheteromers. We de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2012